Stability Results for Fractional Differential Equations with Applications to Control Processing
نویسنده
چکیده
In this paper, stability results of main concern for control theory are given for nite-dimensional linear fractional diierential systems. For fractional diier-ential systems in state-space form, both internal and external stabilities are investigated. For fractional diierential systems in polynomial representation, external stability is thoroughly examined. Our main qualitative result is that stabilities are guaranteed ii the roots of some polynomial lie outside the closed angular sector jarg()j =2, thus generalizing in a stupendous way the well-known results for the integer case = 1.
منابع مشابه
The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملFractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...
متن کاملStudy on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کامل